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If, E(M)=1+M+-2!!—(M)’+a...+('\’f'—!)'
then (1.26) becomes
Yarr = ¥ (tag1) + 0.(h7+1) (1.27)
The integer p 'is called the order of the method (1.26). The remainder term
L

which is neglected, is the relative discretization or local truncation error.
The numerical methods for finding solution of the initial value problem
of Equation (1.8) may broadly be' classified into the following two types:

(i) Singlestep methods These methods enable us to find approximation to
the true solution y(¢) at 4, if ya, ¥, and k are known.

(ii) Multistep methods These methods use recurrence relations, which ex--
press the function value y() at 1,4, in terms of the function values y(r) .
and derivative values y'(¢) at ., and at previous nodal points.

It is obvious from (1.27) that the numerical methods of order p will produce
exact results for all differential equations whose solutions are polynomials
of degree p or less, If
y(@)=agtat
where ao and a, are arbitrary constants, then the singlestep method of order
one will be recurrence relation between the values ye+;, y» and y,. We may
write
Yuy1 = aptay tay,
Ya = Go+8; ta
Ya=a
Eliminating ao and a;, we obtain
' Ynet = yathy,
Thus the singlestep numerical method of order one for Equation (1.8)
will be of the form

Yag = yﬂ+hﬁ'! n= 09 li‘zo veey N=1

where Vo =Jn=f(ta, yu)
The exact values of y (f) will satisfy
y “n-ﬂ) =Yy (’u)+hf(fm Y(‘n))+ T. (l.28)

where T is the local truncation error of the form
Tz 2Ry (2, ta < €2 < tayy
To determine C;, we substitute p(¢) = ¢2 in (1.28), and get C2 = 1/2.
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Next, we construct a multistep numerical method that will produce exact
results whenever (¢ is a polynomial of degree three or less. Consider
y (1) = aotairtax?+al

where ag, a1, a2 and as are arbitrary constants.

A simple third order multistep method uses a recurrence relation between
the values Yas1, Ya» Vo Yog a0d Y. Eliminating o, a, a2and a3 from the
equations

yars = Gotaytapt G2ty T a3lay
Yo = aptaite +atl +af
y, = a +2at +3a8
y;_| = a + 243 te—y+3a3 ':—l
Vooy = ay +2a;taat3mtl,

we obtain -

I ’ ’ ’

Yurr= pat 523V, =~ 16Y,y +5¥ 02

The third order multistep method for Equation (1.8) becomes

yors = ot QY= 16t o), m =23 N=1 (129)

Here we need yo, yi and y; initially to start the computation. The exact
values of y(¢) will satisfy

y(the) = (fn)+]%[23f(‘ns v}’ (1)) = 16f (ta=g, ¥ (ta-1))

+5f(tl"21 y (t"—Z))]"*‘ Ta (1.30)
where T is the local truncation error given by
Ta = Coh* yO(£), tna < § <lan (1.31)

Putting y(t) = t*in (1.30), we get Cy = 3/8.
In an analogous manner, we may obtain numerical methods based on
functions other than polynomials.

Example 1.1 Find the pumerical solution of the initial value problem
y =y, A==%1,
y)=1 0€t<2
Use the first order method '
, a1 = (14Ah) ya, n=012,..,N-1
with h = .1.
We obtain
n =0+ y =0+.13
y2 =0+ y = (14-.1x)2
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o=+ =0+.0p

v = (14+.1) yv_y = (1412
where N = 20.

The values of y.for A = 4 | are listed in Table 1.2, together with the true
values obtained from y(t,) = €A, These values are plotted in Figure 1.1
and compared with the true values. We observe that for A = 1, the approxi
mate solution increases as fast as the exact solution whereas for A = —1
the approximate soiution decreases at least as fast as the exact solution.

TABLE 1.2 SoLUTION OF y' = Ay, /(0) = 1,0 < ¢t S 2 wiTH /i = 0.1

A=1 A= =]

¢ First order Exact First order - Exact

method * solution . method solution
0 1 1 1 1
0.2 1.21000 1.22140 0.81 0.81873
04 1.46410 1.49182 0.6561 0.67032
0.6 177156 1.82212 0.53144 0.54881
0.8 2.14359 2.22554 0.43047 0.44933
1.0 2.59374 2.71828 0.34868 0.36788
1.2 3.13843 3.32012 0.28243 0.30119
1.4 3.79750 4.05520 0.22877 0.24660
1.6 4.59497 - 4.95303 0.18530 - 0.20190
1.8 5.55992 6.04965 - 0.15009 0.1653¢
20 6.72750 7.38906 0.12158 0,13534

}
yit)

4 0}

Exact solution

3.0

2.0

10 First order method

0

L, 4 2 deegy
P 0.4 0.8 1.2 1.6 ¢

Fig. 1.1(a) Numer.iul solution of )’ -y, {0V e |
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independent solutions of the homogeneous equation with T, = 0in(1,37).
The homogeneous equation becomes

€y = &t %(23‘5-16%-1'1"5“-—2) (1.38)
where h = Ah.
We look for the solution of this equation in the form
=Af" (1.39)

where A # 0, £ isan arbitrary number to be determined. Substituting (1.39)
in (1.38) and simplifying, we obtain

23 4 5
L Y <> 1L T Fe_ LF =
¢ (l+I2 h)£+3ﬁ£ 125 0 (1.40)
If £,, £20and €3 are the three roots (distinct) of the characteristic equation,

then the solution of the difference equation (1.38) is of the form
e ént b tes bl
Suppose the characteristic equation has a double root,
£ = b, Ein F €
thenthe form of the above solution is modified to
¢ &+ (catesn)és,
If £ = € = £, then the solution of the difference equation is of the

type
(c1Hcantcs nd)EY

To obtain the particular solution of the inhomogeneous equation (1.37), we
assume T, = T, a constant; then we find the particular soiution as 77/h.
The general solution of (1.37) for distinct roots becomes

= b tathtottr (1.41)

where ¢,, c; and c3 are arbitrary constants to be determined from the initial
errors. For stability, | €| < oo as n — oo and if any | ém | > 1, theerror

| € | increases unboundedly. If two or more £ are cqual and equal to one,
then also | €, | increases unboundedly.

DEFINITION 1.5 A multistep method when applied to y' = Ay, ALO0,is
said to be absolutely stable if the roots of the characteristic equation of the
homogeneous difference equation for the error are either inside the unit
circle or on the unit circle and simple.

The roots of Equation (1.40) are plotted in Figure 1.2. In the graph the
roots are displayed in the following fashion: for real roots the absolute value
of the roots is plotted, and for conjugate complex roots the modulus of the
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pair is plotted as a single quantity (thus conjugate pair of roots are shown as
a single curve). In Figure 1,2, it can be seen that | £ | is greater than one at
h = —0.55and in Equation (1.41) the term containing | £ | grows without
bound as n gets-large. Thus the third order method (1.29) is absolutely stable
for -0.55 < AR < 0.

® Positive real root ] 3.0
A Negative real root €
% Modulus of complex root

EZh

h
-— . . . .
-1.6  -12 -0.8 -0.4 0 0.4 0.8 1.2

Fig. 1.2 Roots of the characteristic equation of the third order method

1.5.1 Interval of Absolute Stability

In the previous section we have determined roots of the characteristic
equation (1.40) by repeatedly solving the polynomial equation for a range of
- values of Ah. A plot of the roots against A (see Figure 1.2) then enables us
to obtain the interval of absolute stability as (~.55, 0). This procedure is
known as the roor locus method.

An alternative to this procedure consists of applying to the characteristic
equation (1.40) a transformation which maps the interior of the unit circle
onto the left half-plane and then using the Routh-Hurwitz criterion which
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DEFINITION 1.6 A numerical method of the form (1.26) is said to be
convergent if

lim y» = y (2,) for all ta € [to, b]

h=>0
th = ’o+nh
The true value y (£,) will satisfy
Y (tarr) = E(M)y (ta)+Tn (1.45)

where T, denotes the truncation error.
The approximate solution will satisfy

Ynp1 = E(Ah) yn—Ra (1.46)

where R, denotes the round-off error.
Subtracting (1.45) from (1.46) and by substituting € = yn—y(tn), we get

€ppg = E(f\h)en"'Rn"'Tn (1.47)
Let us denote (max | Rn| =R and(max) | Tn | = T and assume these
te, 1) Ty tn
as constants. Then (1.47) becomes
| €nty I < E (Ah) | €, ‘ 4+R+T,n=0, 1, 2,00 (1.48)
By induction, we can write (1.48) for E(h) # 1as
" ‘ E"(A)—1 ’
len | S E") | & | + = (RETD) (1.49)
Let E (Ah) be the pth order approximation, then
(Ah
M — EMW+ -y J)rl), M,y
where M, is a constant. Thus (1.49) becomes
A(tn—ty) —
| €n l < l €9 | ex(t"_’(])—*- ,\he( ) 1 I\p—lhp—l
o 1450 )
p:
R AP“II"
X (—’;'+(‘p—_*—_‘—l)‘ Mpiy ) (1.50)

It is obvious that in the absence of the initial and round-off errors,
| en | = 0 as h — 0 like Ch? where C is a constant, independent of h.
Forle |l =0 andp = 1, (1.50) becomes

| e lgel(t Io)—l( /\h
n

+ 5 ) (1.51)
The dependence of | €, | on h is shown in Figure 1.4. Clearly, as h->0, the
truncation error tends to zero whereas the round-off error becomes infinite.
On the other hgnd as h—oo, the round-off error tends to zero but the
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by

Total error

Truncation error

Round- off error

hopt

Fig. 1.4 Truncation and round-off errors as function of A

truncation error becomes infinitely large. The choice of A for which the
bound (1.51) is minimum is obtained when :

he | 2K
M,

We also observe from (1.51) that the first order miethod convergesash — 0
if the round-off error is of order A%

To discuss the convergence of the multistep method (1.29), we determine
the constants ¢, ¢z ¢3 in (1.41). Let us denote

EJ=¢J—-T]':, j=0,1,2

“The constants ¢y, ¢, ¢3 can be found‘by solving the linear system

Ey = ¢;+catcs, .
E; = ¢; émtea émntcs éam,
Ey = ¢, 4283 +ci €
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_These results show that for this method, the magnitude of the truncation
" error coefficient C, decreases towards zero (from the right) and then increa-
ses negatively as the magnitude of #Anax decreases to zero. The values ot C,
and /Amax are shown in Figure 1.5. -

} ¢
1
\
-l: -3 _12 \_1 0 """'hxmax
4a
¢ Fig. 1.5 Truncation error coefficient C, as function of iAmax

Bibliographical Note

There are many numerical analysisbooks having chapters concerning nu-
merical solution of ordinary differential equations, e.g. 61, 103,114, 121 and
237. Some useful books which deal with the numerical methods for ordi-
nary differential equations in detail are 33, 93, 113, 161 and 163. The
difference methods for ordinary and partial differential equations are given
in 46, 88 and 147.

Problems

1. Prove that each of the following ordinary differential equation has a
unique solution on the interval indicated:

(i) ¥ = 2 exp (=33, y (0) = 1 on [0, 10]
(i) y' = ty+13, y(0) =0 on [0, §]
2. Verify that the function

W(t) = yoexp (j:. p(r) dr )+exp ( y’o p(r) dr )

S:o [g(-r) exp ( - j:op(s) ds )] dr B

e
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satisfies the initial value problem
d
7’; = p(t)y+g(1), ¥(to) = yo
3. (i) Solve the initial value problem
y' —ky = A sinwt, y(0) = y,
where k, A, w and y, are given constants.
(i) Assuming that k << 0 show that the steady-state response is equal

to Ao sin (wt—¢) where 4y = 4 and tan ¢ = w, 4
Vk+w k. A

is called the amplification factor, and ¢ is called the phase angle.
4. Consider a system of first order ordinary differential equations

d.
71? = fl(‘a Uy, ”29"', Um)
ullte) = oy i= 1(1)m

Assume that each of the functions fi(¢, v;, v3,..., vm) is continuous and
bounded and satisfies a Lipschitz condition in

- U1y U2y-++, vm fOr tE[ty, b] and —oo < v, 13,..., tw < 0

Then the system of the first order equations has a unique solution -on
[’00 b]'

Investigate the existense and uniqueness of a solution to the following
'system on [0, 2]:

v = 3t+4tv —vy+u;, 01(0) =1
v = texp (—2d), 22(0) =—1
. 1
vy = 2+ (1——4) (v +o2+m), 7(0) =1
5. Consider the following system of two simultaneous second order

equations

’ "=t u, v, u,0)

o" = gt, u, v, u', V)
u(to) = 1o, u'(tg) = Uy
(o) = v, v'(tg) = v,
(i) Convert the above system into a system of first order equations.
(ii) State the number of first order equations in the system.
6. Find y, from the difference equation
Ay +344%, = 0,n = 0, 1, 2,...

when Yo=0,y, =14,y = —1— ‘ (BIT7 (1967), 81)
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Estimate the parameter w by requiring that the method be also exact
for the following functions:

() y(1) =A{l, 1,13

(ii) y(¢) = {l’ t, exp (—-Wl)}

Consider the recursion formula:

Yoy = J’n—l’*‘zhy n
Yo=1
1, h K
- 2 L
»o= l+h+h (2+ 6+24)
Show that
‘ya—e"™ = O(h?) as h — 0, nh = constant. (BIT14 (1974), 482)

Show that the general solution of the initial value problem
¥'+y = r(t), y(0) = y,, ¥'(0) = y’ can be written as

¥t) = yq cos t+y'o sin t+§; r(7) sin (¢—1) dr

Show that the numerical solution of the initial value problem
Y4y =10,50) = 1,y(0) =0
may be obtained by satisfying the formula
| Ve + Yo =t
Consider the following system of difference equations:
Un —1+4cos (h) sin (h) Un-1
[ o ] - [ ~sin(h)  —l+cos () ] [ - ]

How small should / be chosen so that u, — 0 and #» — 0 when n—>oo,

(BIT20 (1980), 389)
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Singlestep Methods

2.1 INTRODUCTION

A singlestep method for the solution of the differential equation

dy
dt

is onc in which the solution of the differential equation is approximated by

calculating the solution of a related first order differencc equation. Thus, a

general singlestep method can be written in the form
 Ynt1 = Yath (ta, ¥u, 1)y = 0, 1, 2,0, N—1 (2.2)

where 4(¢, y, h) is a function of thc arguments 7, J, I and, in addition,
depends on the right-hand side of (2.1). The function ¢(1, v, /1) is called the
increment function. 1f ynyy can be obtained simply by cvaluating the right-
hand side of (2.2), then the singlestep method is calied explicit otherwise it
is called implicit. The true value y(t,) will satisfy
y (I’I‘H) = y (til)+h¢ (f", }’(1::), /’)+T"s n =O’ ls 2) ey N—l (2-3)

where Tn is the truncation error.

The largest integer psuch that | h~t T, | = 0(/h?) is called the order of
the singlestep method. '

Before stating the main result about convergence, we introduce a few
definitions.

DEFINITION 2.1 The singlestep method (2.2) is said to be regular if the
function #(s, y, h) is defined and continuous in the domain to < t < b,
—oo <y < 00,0 < h < /iy (hyis a positive constant) and if there exists a
constant L such that

|, y, M~ z, DI < LIy—z| (2.4)
for every ¢ € [to, bl, , 2 € (—oo, =), i € (0, ho).

DEFINITION 2.2 A singlestep method of the form (2.2) is said to be
consistent if

81, 9,0 ~ 1ty

Y £t ),y (to) = yo, t € lto, b] Q@1

IS



28 NUMERICAL SOLUTIONS

We must also ensure that the formula (2.2) be insensitive to small change
in the local errors. This will be guaranteed by the stability condition. The
main result of convergence is

THEOREM 2.1 A necessary and sufficient condition for convergence of a
regular singlestep method of order p = Iis consisiency. -
This result ensures that the approximate solution converges to the cxact

solution like C h?.
For the application of the formula (2.2) to (2.1), we need a specific form
of the increment function ¢ (1, y, h).

2.2 TAYLOR SERIES METHOD

Let us assume that the differential equation (2.1) has a unique solution
y(t) onlte, ] and that p(¢r) € CP»t)[t,, b] for p = 1. The solutlon )(t) can
be expanded in a Taylor series about any point ¢,

y(0) =y (m)+t—1)y' (t..)+ (r-t..)2 "(t)+ .-

‘Zpi" : TR 2.5)

This expansion holds good for t € [to, b); t» < € < t. Substituting ¢ = tuy,
in (2.5), we get

((n+l)‘=}’(fn)+/7y (fn)+ y (m)+ - +——y (,,)+( _H),y"’“ 0 (&)
We define
o M2 h? )
h & (tn, y (ta), y=h y'(tn)+ 57 ¥ (’n)+"'+,;_!' VP (ta)

* o7 (t—f,.)" @ (ta)+

and 4 ¢ (ta, yn, h) is to be obtained from /1 ¢ (t», y (*n), 1) by using an appro-
ximate value ya in place of the exact value y(¢,). We compute

Yupr = yn+h¢(’m Vns /7), n=201,2, ey N—1 (2.6)

to approximate y (f.4.1). This is called Taylor’s series method of order p.
Substituting p = 1 in (2.6), we get

yn+| = yn+h_f(’n, }’n), n = O, l, 2, eey N"’l (2.7)

which is known as Euler’s method. To apply (2.6), it is necessary to know

v (ta), ¥’ (tn), «vey Y@ (tn). If t, and y (ta) were known, the derivatives can be

calculated as follows:
First the known values /» and y(tx) are substituted into the differential

equation to give

V' (ta) = f(tn, y(1n))
Next, the differential equation (2.1) can be differentiated to obtain formulas
for the higher derivatives of y (7).
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Thus y = fy
Y= fitf 1y
.V':' = Jut2f fiy+ s+ fiHf 1)

where fi, 1y, ... represent the derivatives of / with respect to ¢ and y. .

The values y (1), y"* (¢), ... can be computed by substituting ¢ = f,.
Therefore, if 1, and y(7,) were known exactly, then (2.6) could be used to
compute y (t,+() with an error

hptl
DT Y, tn < En < tay

The number of terms to be included in (2.6) is fixed by the permissible
error. If this error is € and the series is truncated at the term y'P(t,), then

WPHL |yl (L) | < (p+1) e
or, hetl | f@ (&) | < (p+1) € (2.8)
For given 4, (2.8) will determine p, and if p is specified, it will give an

- upper bound on /.. The value | fP (£,) | in (2.8) may be replaced by
max. | f® (1,) | in [to, b] for computational purposes.

Example 2.1 Solve the differential equation
Y =1ty 0= 1,1 € [0, 1]

by Taylot’s series method, and determine the number of terms to be includ-
ed in Taylor’s series-to obtain an accuracy of 10710,

The high order derivatives of y(r) can be calculated by successively
differentiating the differential equation

Y =t+y
We get Y= 14y
and WD =yt =2 3 ..
Also we have
Y ©0) =1
y'(0) =2

¥ (0) =2,r = 3, 4...
Therefore, we obtain
28 2P
y()= l+l+tz+'ﬁ+---+[')—!
To get results accurate up to 107 for ¢ < 1, we obtain from (2.8)
2e

(p+1)!
which gives p = 15. Hence it follows that about 15 terms are required to

achieve the accuracy in the range 1 < 1. .

< Sxio-n
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and thus we have the approximation

) Yas1 = Yat '%‘[f(fng yn)+f(fn+|. _Vn‘l"hf(tm yn))] (2.15)
Either (2.14) or (2.15) can be regarded as »
¥ay1 = ya-+h (average slope) ~(2.16)

This is the underlying idea of the Runge-Kutta approach. In general, we
find the slope at 1, and at several other points: average these slopes, multiply
by A, and add the result to ya. Thus the Runge-Kutta method with v slopes
can be written as

=1 \
K; = hf(tn+cih, y.+F' ayKp)), e, =0,i=1,2,...,v (2.17)

or K] == hf(’m yl)
Ky = hf(ta+cah, yatay Ky)
Ky = hf(tatcsh, yotas K\ +asn Ky)
K.4 = hf(tatceh, yataq K.+a4; Kit+au Ky)

L4
and Yupt = Yat ‘§ wi K

where the parameters ¢z, €3, --., Co, @3j ---, Au(o—r) and wy are arbitrary,
From (2.16), we may interpret the increment function as the linear
combination of the slopes at ¢, and at several other points between ¢ and
tas;- To obtain specific values for the parameters, we expand y.41 in powers
of h such that it agrees with the Taylor series expansion of the solution of
the differential equation to a specified number of terms.
Let us study this approach with just two slopes.

2.3.1 Second Order Methods
Define

K, = hf(tn, Vn)
Kz = hf(fu+02h, yn+a21 Ky)
and Yne1 = yat+w; Ki4+w, K, (2.18)
where the parameters ¢, a1, w, and w, are chosen to make ya+; closer to
y(’n-!»l)-
Now Taylor’s series gives

2
» (tns) = ¥ () +hy" ()27 y" (0

h] 1y
+ 3"_)’ (tll)+ cee (2- 1 9)
where y =fty
Y= ﬁ+ffy .
V' = fut2 fiy+fof 21 (fi+05)
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The values of y’' (ts), ¥ (ta), --- are obtained .by substituting ¢ == 1,."We
expand X and X, about the point (s, y»).

Ki=hfa
Ky = hf(tatcoh, yatay hfy)
= h [f(fn, yn)+(02 ’Iﬁ"}_'azl hfuj:v)'l‘

37 I fut 26z 0 IR fufy R f2op) ]
= hfat+h¥cafi+ayfufy)+
5 P @ furt2esanfofirt @ 2o
Substituting the values of K, and K; in (2.18), we get
Yarr = Yat+(witwh fath2 (waca fi+waaz fuf )+
3 W furk 2estn ffort a3 2o e (2.20)

Comparing (2.19) with (2.20) and matching coefficients of powers of h, we
obtain three equations for the parameters

witwy; =1

cawy = 1/2

as wy; = 1/2
From these equations, we see that if ¢, is chosen arbitrarily (nonzero), then

I 1
ay = €3 Wy = ey Wy = I—E—Q 2.21)
Using (2.21) in (2.20), we get
h? Jx] .

it = yutbfuk S S )+ Gt 2o fort 2o+ (2.22)

Subtracting (2.22) from (2.19), we obtain the local truncation error
Ta=y (tnfl) ~Vn4y
1
R | G T A YA )}+-

5 - .
= l2=3c) y"+3c, Syl + .-

We observe that no choice of the parameter ¢, will make the leading term
of T, vanish for all f(t, y). The local truncation error depends not only on
derivatives of the solution y(¢) but also on the function f. This is typical of
all the Runge-Kutta methods; in most other methods the truncation error
depends only on certain derivatives of y(t). Generally, ¢, would be chosen
between 0 and 1. From the definition of the Runge-Kutta equations, we see
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2(2 1l
3|73 2|2
2 2 3 3
30 7 7|° 7
2 3 3 2 3 4
8. 8 8 9 9 9
Nystrom Nearly Optimal
11 111 N
2 2 3 3
1 |—-1 2 2 2
3| 7
1 4 1 1, 3
6 6 6 4 4
Classical Heun

2.3.3 Fourth order methods
The details of the ‘derivation

of the fourth order method will be omitted,
since they follow the same pattern as above,

In the above notations we can write the fourth order formulas as:
11 . 1
2 2 3 3
1 1 2 1
7|0 % 37 !
1 0 0 1 1 1 =1 1
12 21 13 31
6 6 6 6 8 8 8 8
Classical Kutta
1|3
2 2
1
2 | V2-12 (@-v2)2
1 0 =vV2[2 144202
1 . 1
3 (2-v2)/6 Q2+v2;/6 r3

Gill
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RN

3 3

L 1

3 6 6

1 1 3

2l ¥
-1 3

1 7 0 ———2— ,2
1 : 2. 1
3 o 0 3 6

Merson-

Example 2.3 Solve the initial value problem
Y =1t+y,50) = 1,1 € [0, 1]
by classical fourth order Runge-Kutta method with 4 = .1.

Forn =0 =0,y =1
Ky = hf(to, yo) = (.1) (0+1) == .1

Ky =if (1ot yot 52

= o+ +(1+4)]=1
K = it ot 22 )

1 A1

= (.1)[ o+7+(, 17L7)]= 1108
K¢ = hf(tg+h, yo+K3) ‘
= (1) [0+.1)+(1+.1105)] = .121
¥ = 1 [1+22+.2210+.12105]
= 1.11034167 ’

Forn =1
ty == .l,y[ = 1.11034167

Ky = hf(t;, y1) . , »
= (.1)[.14+1.11034167] = .121034167

Ky = b ot it B

= (.1)[('.1+:2‘—' )+( 1.1103416‘7+.—;-.(.12|os4|61))]
= 132085875



'NUMERICAL SOLUTIONS
Sixth erder methods
LI
3 |-3
2 | 2
3% 3
]y 1 _1
3 12 3 12
1L 9 _3 _3
2 16 8 16 8
1 o 2 .3 _3 1
2 8 8 4 2
p |2 2 & 18 16
4 11 4 1 11
o, 2 o2 4 4 u
1 4 4 15 15 120
1] 1
9 9
111 3
6 u 24:
111 _3 4
3 6 6 6
1.5 27 _ 4 6
2 8 8 8 ]
2 | 221 981 867 _102 1
3 9 9 9 9 9
S |18 678 42 _66 80 3
6 48 48 48 48 383 38
g | 26 _2079 1002 834 44 9 M
82 82 82 82 82 "8 82
“ o 26 27 2712 27 . 216 41
840 ‘840 840 840 840 840 840



